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This paper describes the representation and breakdown of the invariant Kol’mogorov-Arnol’d-
Moser (KAM) tori of the driven particle in an infinite square well in terms of the periodic trajectories
of the system. The periodic cycles are characterized analytically and numerically and their stability
as the amplitude of the driving field increases is determined numerically. A representation of the
zoning number, analogous to the winding number of the standard map, is developed for the system.
It is shown that a KAM surface can be approximated by high-order periodic cycles with winding
numbers corresponding to continued fraction approximates of the KAM surface’s irrational zoning
number. The zoning numbers of the most robust KAM tori between primary resonances are related
to the golden mean and approximated accordingly by periodic cycles. The critical fields at which
the invariant tori break down and the accompanying transition from local to global stochasticity
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occurs is estimated from the breakdown fields of the cyclic approximates.

PACS number(s): 05.45.4+b

I. INTRODUCTION

The motion of a particle in a one-dimensional infi-
nite square well potential driven by an external time-
dependent cosine field is a nonlinear conservative system
that is conceptually and mathematically straightforward,
yet maintains enough structure to be useful in modeling
actual physical systems [1]. As such, the driven square
well is a valuable example for theoretical study of non-
linear systems. An analysis of the transition to global
chaos in the classical system is presented by Lin and Re-
ichl [2,3]. As in other such Hamiltonian systems [3-7],
the classical trajectories (or “orbits” or “cycles”) of the
particle in this one-dimensional system lie on toroidal
surfaces with cross sections dependent on position and
momentum or transformations of these coordinates and
an interior angle that is a function of time.

For extremely small perturbing fields, trajectories lie
on islands surrounding stable (elliptic) fixed points in
phase space, are confined to narrow stochastic layers
bounded by Kol’'mogorov-Arnol’d-Moser (KAM) trajec-
tories, or are themselves KAM tori. As the field am-
plitude increases, the infinite number of primary reso-
nances widens, a complex structure of secondary islands
emerges, and the stochastic layers broaden as bounding
KAM surfaces disintegrate. When the most robust KAM
surface between primary resonances breaks down, the res-
onance zones merge with the stochastic sea. For the in-
finity of principal resonances characterizing the driven
square well, the effect is that of a cascade of sharply
defined breakdowns between neighboring primary reso-
nances, proceeding from higher- to lower-order resonance
pairs.

Lin and Reichl use a renormalization method devel-
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oped by Escande and Doveil for two-resonance Hamilto-
nian systems [8] to estimate the critical field at which
the most stable KAM surfaces break down in the driven
square well. Their predictions of critical fields com-
pare very well to numerical experiment and are consider-
ably more accurate than overestimates typically obtained
from the Chirikov overlap criterion and its variants [4].
The focus of Lin and Reichl’s study of the system is on
estimating critical fields rather than describing the KAM
surfaces themselves, a natural approach to defining the
limit to which a physical system can be pushed before
it becomes completely stochastic and all ability to pre-
dict behavior is lost. When an explicit description of the
KAM surfaces is required, however, difficulties arise. As
nonperiodic trajectories, KAM surfaces are characterized
by irrational winding or rotation numbers and cannot be
represented exactly using numerical methods. We ad-
dress these difficulties by applying concepts developed
by Escande for two-resonance systems to approximating
the KAM surfaces in the driven square well.

Escande [9] links the original renormalization method
to periodic continued fraction approximates of KAM sur-
faces through the “zoning number.” The zoning num-
ber’s role is analogous to that played by the winding num-
ber in the special case of the standard map [10], uniquely
ranking trajectories in the resonance hierarchy. Escande
approximates KAM tori in the general two-resonance sys-
tem with a sequence of increasingly high-order periodic
trajectories whose zoning numbers are the continued frac-
tion approximations of the irrational KAM trajectory
zoning numbers. The breakdown of the KAM surfaces
is estimated by the transitions from stability to instabil-
ity of those cycles, with successively higher-order cycles
providing improved estimates. The most robust KAM
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surface between primary resonances possesses a zoning
number equal to the golden mean or its near equivalent.
Determining the last KAM breakdown therefore becomes
a matter of specifying the periodic trajectories of the sys-
tem and determining their stability, a more manageable
problem than that of attacking the KAM trajectories di-
rectly.

The research discussed in this paper uses these ideas
to derive a detailed classical description of the periodic
trajectories and KAM surfaces of the driven square well.
Section II reviews the equations of motion for the sys-
tem. Section III discusses the calculation of periodic tra-
jectories, a task that requires solving 2n + 1 nonlinear
equations of motion by an iterative numerical scheme.
Section IV presents a first-order linear stability analy-
sis of the periodic cycles and calculations of the critical
fields at which those trajectories become unstable. Sec-
tion V begins with a review of Lin and Reichl’s derivation
of the approximate two-resonance paradigm form of the
Hamiltonian and a brief description of Escande’s zoning
number theory [2,9]. We derive a relationship between
the Escande zoning number and the winding number in
the original system and then use this relation to develop a
detailed description of the most robust KAM surfaces of
the system based on those of its two-resonance approxi-
mation. Finally, we estimate the fields at which these tori
break down. These estimates prove to agree closely with
previous results and numerical experiment. Because the
KAM surfaces themselves are described, this work pro-
vides a considerably more complete picture of the KAM
structure than was previously available.

The original motivation for acquiring a more complete
understanding of this driven system was to increase its
usefulness as a model for the process of laser damage
in dielectric materials [1]. In light of work in quantum
chaotic Hamiltonian systems, our description of the pe-
riodic cycles proves interesting beyond its application to
modeling KAM tori. Lin and Reichl have extended the
concept of resonance overlap to the quantum square well
[11,12] and Gutzwiller has shown that the structure of
periodic trajectories in a classical system is intimately
related to the structure of the system’s energy levels in
the quantum regime [7]. We have been able to apply
the descriptions of classical periodic and KAM trajecto-
ries presented in this paper to the problem of determin-
ing KAM equivalents in the quantum mechanical system,
work that we will describe in later works [13,14].

II. EQUATIONS OF MOTION

We begin with a brief review of the classical equations
of motion for the driven square well (Fig. 1). The width
of the square well is 2a, the left- and right-hand walls are
located at —a and +a, respectively, a is set to 1, and the

1

mass of the particle is set to 3. The equation of motion

for the particle as it moves between the walls is
& = —2¢e coswt. (1)

The solution of this equation for particle position z(t)
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I = —a €r=da

FIG. 1. Particle in an infinite square well, walls at —a and
a.

and momentum p(t) between wall contacts is

2e
z(t) = x5 + E(coswt — coswty)

2
+ (—E sinwty + 2p1) (t—t5),
w
p(t) =pr — i(sinwt — sinwty), (2)
w

where the subscript I indicates the initial time, position,
and momentum.

The calculation of a complete trajectory requires refor-
mulation of its equations at each wall contact to account
for the momentum reversal. Position, momentum, and
time at the contact are used as the initial conditions for
the subsequent motion. The recast equations for particle
position z,(t) and momentum p,(t) at time ¢ between the
sth and (s +1)th contacts occurring at times ¢, and t,4 1,
respectively, are given by

Zs(t) = as + byt + K cos wt,

1
ps(t) = E(b“J — Kwsinwt),
ts <t<t8+1, § = 1,2,..., (3)
where k = (2¢)/w? and the coefficients a, and b, are

given by

as = x4(ts) — Kcoswt, — bty
bs = 2p,(ts) + kwsinwt, . (4)

Boundary conditions at time t, are

Is (ts) = $3_1(t3),

Ps(ts) = —ps—1(ts), s>1. (5)

The equations of motion and boundary conditions are
used to calculate particle trajectories numerically, given
a set of initial conditions [z;(¢1),pr(¢r)]. Calculated par-
ticle trajectories are viewed in stroboscopic plots (Fig. 2)
in which particle position and momentum are plotted at
times 27N for N = 1,2,.... The Poincaré section shown
in Fig. 2 illustrates the complex structure of separatrices,
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FIG. 2. Phase space strobe plot of 100 trajectories at field
strength ¢ = —0.04, with momentum p plotted versus position
. The initial momentum py of the 100 trajectories varies from
—0.01 to —1.00 in increments of 0.04. The initial position
s is at the right-hand wall and initial time and field phase
are zero. The solid lines indicate the odd-numbered primary
resonance zones. All calculations presented in this paper were
performed on a Sun Sparc 10 workstation.

stochastic layers, stable islands surrounding periodic tra-
jectories, and KAM approximations. At very low particle
momenta, the structure merges into a region of entirely
chaotic motion. The recursive form of the equations of
motion (3) makes it convenient to consider a trajectory
in terms of the times at which the particle hits the well
walls. Throughout this work, a trajectory is specified as
a set of wall contact times and an initial position and
momentum.

The focus of this paper is restricted to the most physi-
cally interesting particle trajectories, those for which the
electric field perturbs rather than dominates the motion.
For these trajectories, the particle alternates between
walls, never hitting the same wall twice in succession.
The boundary condition at the walls is

z4(ta) = (=1)" 21 (1),

where ¢; is the time of the first wall contact, that is,

s=1,2,..., (6)

z1(t1) = *1. (7
The coefficients a, and b, (4) can be rewritten
a, = (—1)%(ar — 2sz,)

8
—2K Z(—l)r+’(wtr sinwt, + coswt,),

r=1

by = (=1)%r + 2kw Y (1) sinwt, , (8)

r=1
where

ar==z;— kK, by =2p;. (9)

Substituting these expressions into (3) yields a recur-
sive form of the equations of motion in terms of the initial
momentum and wall contact times [z, = 1 (¢1)]:

(=1)**z; = ar — 252,

s—1

+2x Z(—l)"[w(ts —t,)sinwt, — coswt,]
r=1

+brts + (—1)* K cos wt,. (10)

The summations in this expression are eliminated by
combining the equations for t,, t,41, and t,,2, resulting
in a three-term recursion relation for the contact times:

2z (—1)"*t! — k(coswt, 12 — coswi, 1)

2kwsinwtg 4y = n :
s+2 — ls+1

2¢1(—1)**! + k(cos wt,41 — coswt,)

ta+1 - ts

(11)

In addition to initial conditions and contact times, each
trajectory is also associated with a winding number p,
defined as the number of spatial periods completed in
one period of the driving field. The winding number is
given by

o=, (12)

where ¥ is the mean particle velocity, T is the time re-
quired to complete a single cycle of the field, and ) is the
distance traveled in one spatial period of the particle mo-
tion, i.e., twice the well width. Periodic trajectories are
characterized by rational winding numbers, KAM sur-
faces by irrational winding numbers.

III. PERIODIC TRAJECTORIES

In a periodic motion the particle makes a total of 2n
wall contacts in alternation in exactly N complete field
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cycles (total time 2N /w), returning to the initial posi-
tion with the initial velocity. A periodic orbit is referred
to as an (n,N) cycle. The cycle has a rational winding
number of form
p= N ’ (13)

where n and N are integers. The class of periodic cycles
with the same spatial periodicity, i.e., those associated
with the same value of n, are referred to as n cycles.

The first wall contact is made at time t;, the second at
ts, and so on. The return to the initial position z; takes
place between the 2nth and (2n + 1)th contacts, which
occur at times t3, and t3,41. Since the orbit is periodic,
the (2n + 1)th contact is at time t; after the return to
the initial position, so that

2N7
t2n+1 = —w— + tl- (14)

Substituting these conditions into Eq. (3) results in
2n + 1 nonlinear equations for the 2n contact times and
the initial conditions p;y and z; that describe a periodic
trajectory:

T =a; + bltl + KZCOS(Ut]_,

—Z1 = as + baty + K coswta,

: (15)
(=1)®" 12y = agp + bantan + K coswtzn,

(—1)(2"+1)+1:c1 = Gan+1 + bant+1(2N® + 1) + K coswty.

(16)

These 2n+ 1 equations are nonlinear in the contact times
and can only be solved analytically for one initial condi-
tion in terms of the other if n = 1 or for special cases
if n > 1. Direct numerical solution for n > 1 using
current nonlinear solvers also proves impractical or im-
possible for the large-n nonsymmetric systems that we
use to approximate KAM surfaces. We therefore solve
the equations numerically with a scheme that iterates on
increasingly accurate trial solutions of a linearized form
of the equations.

A first choice trial solution at a particular field is found
by considering the behavior of the system unperturbed
by a driving field. At zero field, all periodic particle tra-
jectories reduce to 1-cycles. Momentum and the time
between wall contacts are constant and thus easily deter-

mined for an orbit with a rational winding number %.

N
The momentum at zero field for an (n, N)-cycle is
o Nw
= —. 17
P = (17)
Wall contacts occur at times 7, given by
- 2(s—1
= “171 mI| + (S )] . (18)

2p°

The contact times ¢, and initial momentum py for a peri-
odic trajectory in a nonzero field can be considered per-
turbations of the zero-field times and momentum. They

are written as

pr=p° +6p,
ty =T + 04, s=1,2,...,2n, (19)
where §, and ép are the perturbations in time and mo-
mentum, respectively.

Substituting these expressions for the initial momen-
tum and contact times into the 2n+1 nonlinear equations
of (16) and performing a Taylor expansion to first order
in ép and J, on the resulting system yields a set of 2n+1
linear equations for the perturbations. They are solved
numerically using standard routines from the linear sys-
tems package LINPACK [15]. The calculated perturbations
are then added to the original trial solution (19) to ob-
tain a new trial solution for the contact times t;. The new
trial solution is substituted into the linearized equations
and the process repeated until the solutions converge,
that is, until the perturbations become zero within some
predetermined precision. This is a variant on Newton’s
method, similar to those suggested by Mestel and Perci-
val for the standard map and its Hamiltonian equivalents
[16] or by Grobgeld et al. for the quartic oscillator [17].

We have used this iterative numerical methodology to
calculate initial momenta as a function of the field ampli-
tude € for a variety of n and N. The results of these cal-
culations for the initial position at the right-hand wall are
shown in Fig. 3. The estimated 1-cycle initial conditions
exactly overlay results derived analytically and trajectory
calculations of higher-order periodic cycles from initial
conditions found by using our iterative scheme replicate
the expected periodicity to the precision of the estima-
tion (1.0 x 1071¢ in these calculations).

At low energies and high field amplitudes there is some
scatter of points in the plot. In those regions or near cy-
cle bifurcations the iterative scheme may converge to a
nearby n-cycle characterized by a different time period-

(LD

FIG. 3. Initial momentum p; is plotted as a function of field
amplitude € for various (IV,n)-cycles. The squares indicate
the critical fields at which the cycles become unstable.



51 DRIVEN PARTICLE IN AN INFINITE SQUARE WELL: ... 1939

icity or a sidebranch of the bifurcation. The scattering
occurs for the most part in regions where periodic trajec-
tories are unstable and is therefore of little relevance to
the approximation of classical KAM trajectories. How-
ever, precision effects may be a cause for concern in ex-
tending the approach to the quantum-mechanical system,
where “scars” left by unstable periodic orbits are impor-
tant indicators of the quantum-mechanical states of the
system and must thus be calculated accurately. In this
case, it may be wise to make a more sophisticated choice
of a first trial solution than that suggested here. For ex-
ample, in a sequence of calculations for an (n, N)-cycle,
in which the field is increased in successive increments, a
better choice for the starting point at a particular field
is the final solution at the previous value.

Figure 3 also illustrates the similarity between regions
surrounding the (1, N)-cycles. The chief difference is the
scale of each (1, N)-cycle region. The (1, N)-cycles for

FIG. 4. Stroboscopic plots of various (N, n)-cycles, with
momentum p plotted versus position z. Squares mark the
center of islands corresponding to 4-cycles, triangles mark the
center of islands corresponding to 5-cycles, and crosses mark
6-cycles. Note that for N a multiple of n, the (N, n)-cycles
reduce to 1-cycles and similar reductions occur in order when
N and n have a common multiple.

odd N correspond to the primary resonances of the sys-
tem, discussed in detail in Sec. V. Cycles and critical
fields occur in similar patterns in each resonance zone.
This similarity is also apparent in the stroboscopic plots
of Fig. 4, where a variety of 4-, 5-, and 6-cycle trajec-
tories is shown. Note that many high-order cycles have
low-order equivalents, for example, (4,8)-, (5,10)-, and
(6,12)-cycles are all equivalent to the (2, 1)-cycle.

IV. STABILITY OF PERIODIC TRAJECTORIES

In a nonlinear Hamiltonian system, a “stable” trajec-
tory is one for which arbitrarily small perturbations do
not grow as the motion continues, that is, perturbations
remain bounded. Consider the effects of small deviations
from the contact times for the (m + 1)th full cycle of a
periodic trajectory (m = 0,1,...), where “cycle” in this
context refers to a single completed period of the motion
rather than the trajectory as a whole. At the beginning
of the (m + 1)th cycle, the particle will have come in
contact with the walls a total of 2mn times. The last
contact of the mth cycle occurs at

2N
tomn = Mo L. (20)
w

The ith contact of the (m + 1)th cycle occurs at

2N

Deviations from the periodic contact times during the
(m + 1)th cycle can be thought of as some perturbation
&omn+i added to the contact time £2,,,4;. The perturbed
times, denoted by t5,.,. . ;, are written

Wthnt1 = M(2TN) + Eamny1 + Wiy,
“)t’2mn+2 = m(27rN) + §2mn+2 -+ u)t2a

Wtmntan = M(2TN) + E2mnt2n + Wian,
wt,Zmn+2n+1 = (m + 1)(27('N) + £2mn+2n+1 + wtly (22)

where the equations have been multiplied through by the
frequency w.

Introducing these perturbed times into the three-term
recursion relation for the contact times (11) and perform-
ing a Taylor expansion on the resulting equations to first
order in the deviations ; yields 2n + 1 linearized equa-
tions for £2,m4i, written in the form of a three-term re-
currence relation as

Lomntivz = Aiomnii + Bilamntit (23)
with
Ai = —¢i,i/qii+2, (24)

B; = —qiiv1/%,i+2-

The coefficients g; ; are independent of the cycle number
m and are given by
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2z (—1)"*"! 4 K(cos witity — coswt;)

(w(tivr —t:)]?
K sin wt;

w(ti+1 _ t,‘) ’

(25)
—2x1(—1)**! + k(cos wt;rz — coswtiyr)

Gijit1 =
v [w(tivz — tiv1)]?
—2z1(—1)**! — k(cos wt;11 — coswt;)
[w(tiv1 —t:)]2
+2Kk coswt; 41
rsinwt [ 1 1 ]
K sin wt; —
FHwltive —tiz1)  w(tir—t)]’
21 (—1)"+! — k(coswt; 4o — coswit;y1)
Qiiv2 =

[w(tive — tit1)]?
Ksinwt; o

w(tive —tiv1) (26)

In general, each solution vector £= (é1,€2,..-&2n) of 2
nonperiodic linear three-term recurrence relation of form
(23) is associated with two linearly independent solutions
™ and {® such that the solution € can be written as a
linear combination of the two such that

£=cWFV 4 FD) (27)

where c¢() and ¢ are constants [18].

In analogy with Floquet theory for second-order dif-
ferential equations, we make the ansatz that the compo-
nents of a solution E of the periodic three-term recurrence
relation (23) are products of an overall phase factor de-
pendent on the number of cycles the trajectory has com-

Ay, B; -1 0 0
0 A; B, -1 0

0 0O 0 0 O
4 0 0 0 0
B2n —K 0 0 :

and the solution vector A is given by
A= : . (34)

The subscript on the factor p,,+1 is dropped, since from
Eq. (37) it is clear that p does not depend on it.
A solution A exists if and only if

0=|Al (35)

The coefficients g; ; are related by

0 0 As Bz -1 ---

pleted and a solution A; for the perturbations in a single
period,

Cnm+i = UmA, (28)

where U,, is the characteristic coefficient. The coeffi-
cient U,, can be expressed as a product of m phase fac-
tors fi1, f2, - - - 5 ibm, one for each completed period of an
(n, N)-orbit:

Um = p1piz -+ * P, (29)

so that £3,,n4i becomes

Coamnti = Hiftz - PmA;. (30)

A periodic trajectory will remain stable if and only if the
perturbations £3,,n+: are bounded, implying that the lin-
early independent solutions (3mmn+: and thus the product
of the factors p; must also be bounded.

To determine the conditions for which an (n, N)-orbit
is stable, Eq. (30) is substituted into the three-term re-
currence relation (23). The (2n+1)th equation in (22) for
t; is redundant with the first and the ansatz of Eq. (30)
implies that

A2n+1 = Um/-/vm+1A1’
Agniz = Unpimi1D2. (31)

These substitutions result in 2n fully determined equa-
tions for the time deviations in the mth (n, N)-cycle that
can be written in matrix form as

0=U,AA , (32)

where the matrix A is given by

0 0 0 0
-0 0 0 0

0 0 0 0

: . : 0 3 (33)
-+ 0 A2n——2 BZn—2 -1
-0 0  Azn1 Bana

0 0 0 Aapn

[

Qiit2 = —Qit1,it1 (36)

and, as a consequence, the determinant |A| can be re-
duced to a quadratic equation for u

nW+Qu+1=0, (37)

where Q is a function of the coefficients A;, B;. That is, Q
can be expressed in terms of the field amplitude, periodic
trajectory contact times, and the initial momentum.

There are two possible solutions of the quadratic equa-
tion, given by

1/2
L2 = _% + (%2 _ 1) , (38)
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where the two solutions are related by the expression

pMp@ =1, (39)
Two characterizations for the solutions are possible.
(i) The solutions are complex and each other’s conju-

gates, that is,

W = ) (40)

and

D] = |u®)] = 1. (41)
In this case all solutions &; for the time perturbations
(28) are bounded and the trajectory is stable, so that a
trajectory whose initial conditions are perturbed slightly
from those of the exact periodic trajectory remains on a
confined orbit (“island”) in the immediate neighborhood
of the periodic cycle.
(ii) The p are real and

p® = (u®)=t, (42)

1941

so that one or the other of the u solutions is larger than
one. Any solution &; that is not orthogonal to the corre-
sponding Ay will increase without bound. Such a peri-
odic trajectory is unstable.

These alternatives are representative of the Hamiltonian
nature of the original system. Solutions where both mag-
nitudes of x(1'2) are less than one correspond to attrac-
tors, which do not exist in Hamiltonian systems.

The parameter Q is real. Therefore, from (37), a peri-
odic trajectory is unstable when

Tz —-1>0, (43)
that is,
lQl > 2, (44)
and stable when
Q| < 2. (45)

The magnitude of @ thus becomes the criterion by

TABLE 1. Critical fields for a variety of (n, V) cycles.

n=1 ec n=22 ec n=3 ec n=4 ec n=2=5 ec n==6 ec
(1,1) 1.2
(6,7) 0.128
(5,6) 0.140
(4,5) 0.162
(3,4) 0.186
(5,7) 0.200
(2,3) 0.214
(5,8) 0.164
(3,5) 0.226
(4,7) 0.160
(5,9) 0.172
(6,11) 0.142
(1,2) 0.228
(6,13) 0.108
(5,11) 0.128
(4,9) 0.110
(3,7) 0.138
(5,12) 0.092
(2,5) 0.102
(5,13) 0.076
(3,8) 0.068
(4,11) 0.050
(5,14) 0.040
(6,17) 0.032
(1,3) 0.212
(6,19) 0.020
(5,16) 0.024
(4,13) 0.028
(3,10) 0.034
(5,17) 0.036
(2,7)
(5,18) 0.036
(3,11) 0.058
(4,15) 0.036
(5,19) 0.040
(6,23) 0.032
(1,4) 0.054
(6,25) 0.028
(5,21) 0.034
(4,17) 0.030
(3,13) 0.038
(5,22) 0.026
(2,9)
(5,23) 0.024
(3,14) 0.021
(4,19) 0.016
(5,24) 0.013
(6,29) 0.008
(1,5) 0.074
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FIG. 5. Stroboscopic plots of the breakup of the (4, 5)-cycle, predicted to occur at a field amplitude of 0.162. The momentum
p is plotted versus the position z. (a) —e = 0.160, (b) —e = 0.1625, and (c) —e = 0.165. The circle indicates the cycle center

in all cases.

which we can determine the stability of a periodic trajec-
tory. Given an (n, N)-cycle for which 2n contact times
and initial momentum have been calculated using the
numerical methods described in Sec. III, @ can be calcu-
lated numerically from the determinant of the matrix A
(33) and the quadratic equation (37), where the dummy
value |u| = 1 is substituted into the latter. If the result-
ing value of the parameter |Q| > 2, the cycle is unstable
at that field; otherwise, it is stable.

We have determined the critical fields at which the
trajectories become unstable for a spectrum of (n,N)-
cycles by observing when the absolute value of Q be-

comes greater than 2. The results of these calculations
are shown in Table I and Fig. 5. The critical fields de-
termined by this first-order linear stability analysis com-
pare very well to numerical experiments such as that of
Fig. 5. A (4,5)-cycle trajectory, calculated from initial
conditions found by the iterative method, is shown in
transition from stable to unstable motion. At less than
the critical field, the cycle remains stable after 10000
wall contacts, appearing as a dot in Fig. 5(a). At a field
slightly higher than the critical field amplitude of 0.162,
the structure of the invariant tori islands becomes fuzzy
and the cycle appears blurred after 3000 steps. Finally,
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at well above the critical field, the cycle is entirely un-
stable and the calculated trajectory merges into the sur-
rounding stochastic layers. Though as a practical mat-
ter such numerical experiments are qualitative, our first-
order predictions of the onset of instability correspond
well to the earliest signs of the disintegration of the is-
lands in the (4,5)-cycle.

V. APPROXIMATING KAM SURFACES

We now apply the characterization of the periodic cy-
cles to the problem of approximating KAM tori and pre-
dicting their breakdown, using ideas suggested by Es-
cande [9]. Key to this application is Escande’s devel-
opment of the concept of a zoning number that links
high-order approximates to the earlier renormalization
methodology developed with Doveil to predict KAM
breakdown ([8]. This original renormalization technique
is used by Lin and Reichl [2] to estimate KAM break-
down, but does not allow for representation of the KAM
surface itself. The zoning number is analogous in more
general systems to the winding number in Hamiltonian
equivalents of the standard map [10] and Escande [9]
has shown it can be used in similar fashion to determine
cyclic approximates to KAM surfaces.

Lin and Reichl [2] write down the Hamiltonian for the
cosine-driven particle in an infinite square well as
~ ~2 ~ ~
H= %+b[ (% — a) + n(—& — a)] + EZ cos @(t + @)

(b — o0), (46)

where & and @ are the amplitude and frequency, respec-
tively, of the external field and 7(z) denotes the unit step
function. The constant phase factor ¢ is introduced to
account for the field phase offset that may exist in a phys-
ical system. This Hamiltonian can be transformed into
dimensionless form by introducing an arbitrary unit of
energy c and the following canonical transformation:

,i:.'ll p_V p,g —87

be, t+d=a ” ”

The resulting Hamiltonian is

H

H

b

H = p® + b[n(z — 1) + n(—z — 1)] + ez cos(wt)

(b— o00), (47)

where the position is normalized to lie on the interval
[-1,1] and the transformed momentum p, time ¢, posi-
tion z, and all other quantities are now dimensionless.

A canonical transformation to action and angle vari-
ables (I,6), viz.,

z=—1+ %Osgn[sin(B)], p= %Isgn[sin(ﬂ)] . (48)

where

2VE 2It
I= Vo 0= T )

pa 5 6 €[-m, 7], (49)

and Ey is the energy and sgn[ | is the sign of the argu-
ment, yields [2]

o= w2]?

+ ex(1,0) cos(wt). (50)

The position function x(I,8) is periodic in I and 6. The
Hamiltonian is expanded in terms of a Fourier series

oo

272 1
m1 de —; cos(nf — wt). (51)

H= 4 n2 n2

In this multiple-resonance form, it is clear that the sys-
tem has an infinite number of primary resonances at en-
ergies Ep

__ndf

I =nm ER,

n=13,5,... . (52)
These are the primary resonances energies, indicated in
Fig. 2 by the solid horizontal lines across the phase plane,
about which the (1, N)-cycles (IV odd) are centered.

Primary resonances bound regions of self-similar be-
havior, that is, the structure of KAM trajectories,
stochastic layers, islands, and associated periodic tra-
jectory repeats between primary resonance pairs n and
n + 2. The behavior of a trajectory in this Hamilto-
nian system is almost completely influenced by the two
nearest primary resonances 7 and 7t + 2 (R=1,3,...) [2].
It is therefore reasonable to approximate the multiple-
resonance Hamiltonian by one of a set of two-resonance
Hamiltonians

w212 4e | 1
H =~ 1 _F{ = cos(if — wt)

1 .
A series of canonical transformations on this two-
resonance Hamiltonian leads to the final two-resonance
form [2]

v (n+2)%
2 2w?

_;’—:cos[(”“)( iy ')] (54)

where z’, v', and ¢’ are the transformed position, momen-
tum, and time, respectively.
If the parameters M, P, and k are defined as

/
COos T

(R +2)% n2e N+ 2
n+2)% p_1e L _ , 55
2w2 2w?’ o (55)

M =

this Hamiltonian is clearly of Escande paradigm two-
resonance form [9]

'Ul2

H’EHEz7-—Mcosw——Pcosk(w—t), (56)
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where M and P are the resonance amplitudes and & is the
wave number. Escande [9] defines a stochastic parameter
S in terms of the resonance amplitudes M and P by

S =2vVM +2VP. (57)

As the parameter is increased, the familiar structure of
secondary islands, KAM surfaces, and stochastic layers
emerges between the two primary resonances. The wind-
ing number describes this hierarchy correctly in the two-
resonance special case of the standard map (M = P =
k = 1), but does not account for the effect of the ra-
tio of spatial periodicities of the two resonances in the
more general case. The winding number does not there-
fore correctly rank trajectories in a general two-resonance
system. Escande uniquely characterizes a trajectory’s
rank in the hierarchy of emerging trajectories by a zon-
ing number z that is the analog of the winding number
in systems equivalent to the standard map. This zoning
number z is defined as

z:k(_i—l)ﬂ, (58)
vp

where vp is the mean velocity in the paradigm two-
resonance system and k is the ratio of primary resonance
wave numbers. The zoning number for the paradigm
Hamiltonian is rational for periodic cycles and irrational
for KAM trajectories.

In two-resonance systems, Escande argues that KAM
surfaces whose zoning numbers possess continued frac-
tion expansions ending in the same periodic series of
integers form a universal class. The universal class of
“noble” tori consists of trajectories possessing zoning
numbers with expansions like that of the golden mean
g = (V5 + 1)/2, ending in a series of ones. The golden
mean itself is the zoning number of the last KAM be-
tween primary resonances to break down. In the special
case of the standard map, the zoning number is equal
to the inverse winding number, allowing direct compar-
ison of standard map results to the special case of the
paradigm two-resonance system.

To relate Escande’s work to the multiple-resonance sys-
tem we reverse the series of transformations leading to
the two-resonance paradigm form of the driven square
well Hamiltonian (54). We apply this inverse set of trans-
formations to the mean velocity in the paradigm system
to obtain an expression for the momentum in the original
system in terms of the paradigm velocity v’ as

p=[- ") [avom ) 59

The winding number in the original Hamiltonian is given
by (12) as

oT 92w

= — = —. 60

PE = L (60)

Substituting ¥ into this expression to relate the wind-

ing number p to the transformed mean velocity #’ results
in

21 v’
== |- =—]. 61
L ﬁ[z ﬁ+2] (61)

Substitution of the mean velocity as a function of the
zoning number (58) into this equation yields the final re-
lation between the winding number of the original system
and the zoning number in the final Escande paradigm
system:

1

r= [1 ﬁ,+2+ﬁ(z—1)]' (62)
Note that the Escande Hamiltonian assumes a mass of
1 and the primed system a mass of %, accounting for
the apparent factor of 2 lost in the transformation from
(61) and (62). Because Escande’s zoning number depends
on the ratio of primary resonance numbers, the zoning
number ranks the trajectory not only in the hierarchy
of the immediate two resonances, but also in the larger
hierarchy of resonances in the multiple resonance system.
That is, the zoning or winding number relationship of Eq.
(62) is valid for the multiresonance system in its entirety,
not just the two-resonance approximation.

We use the final expression (62) relating the driven
square well winding number to the Escande two-
resonance zoning number to determine the series of peri-
odic trajectory approximations that represent the most
robust KAM trajectories in the multiresonance system.
The most robust KAM trajectory between primary res-
onance pairs 7 and 7 + 2 is characterized by a golden
mean zoning number [9]. The winding number of the
corresponding KAM surface in the multiresonance sys-
tem is then given by

S| =

1 1
r=3 [1- s =T (62

We expand this winding number in successively more
accurate continued fraction approximations of the right-
hand side of the expression. The result is a series of ratio-
nal fraction approximates of the winding number. The
associated periodic trajectories are the cyclic approxi-
mates of the KAM surface itself. Escande notes that for
extremely different primary resonance spatial periodic-
ities, a related number such as g + 1 may be the zon-
ing number of the last KAM trajectory rather than the
golden mean itself. The condition on k& for which the
zoning number of the most robust KAM trajectory is g
is given by the rough criterion

1 k<, (64)
km

where
km = 2.2. (65)

This condition is always satisfied for the primary reso-
nance pairs in the system of the particle in a square well.

For example, from Eq. (63) the last KAM trajectory
between the first and third resonance zones is approxi-
mated by periodic cycles with winding numbers
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21 34
12358 1321 (66)

This is the series of cycles, shown in Fig. 6, that was
suggested as corresponding to the last KAM trajectory
between the first and third resonances by Becker et al.
[19]. In that work, the series was proposed as a strategic
guess based on patterns observed in cyclic trajectories.
Similarly, the last KAM trajectory between the third and
fifth resonance zones is associated with the series

2 47
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that between the fifth and seventh resonance zones with
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FIG. 6. Initial momenta p; of cycle approximations to the
last KAM surfaces between resonances are plotted as func-
tions of the field amplitude €. In (a), the approximations are
for the last KAM surface between resonances one and three;
in (b), they are for the approximations to the last KAM sur-
face between resonances three and five. Critical fields are
indicated by squares.
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TABLE II. Critical fields (ec) of continued fraction ap-
proximations to the last KAM surfaces between resonance
zones 1 and 3 and resonance zones 3 and 5 (w = 3). The
predictions for breakdown are ec = 0.143 and ec = 0.0256,

respectively.
Zones 1-3 Zones 3-5
p ec P ec
2/3 0.2 4/15 0.037
3/4 0.186 7/24 0.033
5/7 0.196 11/39 0.043
8/11 0.180 18/63 0.043
13/18 0.149 29/102 0.028
21/29 0.155 47/165 0.026
34/47 0.147 76/267 0.027
55/76 0.145 123/432 0.0260
89/123 0.146 199/699 0.0257
144/199 0.144 322/1131 0.0256
233/322 0.143 521/1830 0.0256
377/521 0.144
610/843 0.143
987/1364 0.143
16 1117 28 45 73 (©8)

and so on.

Finally, we estimate the critical field at which a KAM
surface breaks down from the fields at which its peri-
odic approximations become unstable. The estimation
increases in accuracy as higher-order approximates are
used. We calculate these fields for the most robust KAM
trajectories between primary resonance pairs (1,3) and
(3,5), estimating the KAM breakdowns from the con-
verging critical cycle fields. The results are summarized
in Table II. The breakdown fields compare well to esti-
mates made by direct renormalization (Table III), but
are consistently slightly lower. This is probably due to a
combination of factors. Lin and Reichl derive their esti-
mates from curves given by Escande and Doveil, directly

TABLE III. Comparison of cyclic-approximation predic-
tions of the critical field to those made using direct renormal-
ization [2] and the overlap criterion [4], as well as to numerical
experiments (29 digits of precision [2] and our own 16 digit
calculations), w = 3.

Method €c, zones 1-3 ec, zones 3—5
overlap criterion 0.281 0.0703
renormalization group 0.158 0.0360
cyclic approximations 0.143 0.0256
numerical experiment 0.16-0.17 0.035-0.038
(29 digits)
numerical experiment 0.14-0.16 0.025-0.027
(16 digits)
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for the 1-to-3 transition and by extrapolation for the 3-
to-5 transition. Our own use of these curves suggests that
such an extrapolation is good to only about 20%. In addi-
tion, they quote a higher calculational precision than we
use. A higher precision calculation takes many more iter-
ations to exhibit diffusion across the energy spectrum, so
that breakdown at a given number of iterations appears
to occur at a higher field for greater precision. For all
practical purposes, however, critical fields to more than
two or three digits of precision are probably not verifi-
able by numerical experiment. The virtue of our current
approach lies less in the more precise prediction of the
breakdown fields than in the ability to approximate the
KAM surface itself.
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VI. CONCLUSIONS

We have presented a complete characterization of the
periodic trajectories of the driven square well and es-
tablished criteria by which their stability can be deter-
mined. Our first-order estimate of those critical fields
compares closely to those found by numerical experi-
ment. The difficulty in performing a similar analysis of
the KAM surfaces of the system is that they are associ-
ated with irrational winding numbers and therefore can-
not be treated directly using numerical methods of the
type we use to describe periodic cycles. However, using
Escande’s ideas for approximating KAM surfaces in the
two-resonance system and our description of the periodic
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FIG. 7. These stroboscopic phase plane plots show the breakdown of the last KAM surface between the first and third
resonances and the accompanying transition to global instability. Momentum p for the trajectories is plotted versus position
z. The field amplitude is (a) 0.142, (b) 0.144, (c) 0.148, and (d) 0.150. The critical field is estimated to be 0.143. The nearly
solid line of trajectory approximations in (a) and (b) indicates the position before breakdown of the last KAM surface between
the resonances (Fig. 6). All trajectories are calculated from an initial position z7 = 1 for 2000 time steps.



trajectories of the driven square well, we have been able
to model the most robust KAM surfaces, those associ-
ated with the transition from local to global stochastic-
ity (Fig. 7). We have made accurate estimates of the
breakdowns of these “last” KAM surfaces from the criti-
cal fields at which their high-order cyclic approximations
become unstable. These breakdown estimates generally
improve upon those made using overlap criteria or direct
renormalization techniques. However, the principal ad-
vantage of this approach is the ability to represent the
KAM surface itself in terms of cyclic approximates, in-
formation that could not be derived directly using other
methods. This capability, together with the analysis of
the periodic trajectories themselves, gives us a highly de-
tailed description of the classical system.

The utility of this description is not limited to increas-
ing our understanding of a single classical Hamiltonian
system. The approach discussed here should be appli-
cable to other multiple-resonance systems. More signif-
icantly, Lin and Reichl extended their original work on
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the classical system in a study of resonance overlap in
the quantum regime [11,12], but to our knowledge the
periodic trajectories have not yet been related to the lo-
calization of quantum wave functions in the driven square
well. Theoretical studies [7,20] have shown that periodic
orbits of nonlinear systems are an extremely useful tool
for creating descriptions of their semiclassical and quan-
tum dynamics. Analyses of semiclassical spectra can be
performed in terms of stable and unstable periodic cy-
cles and it has been shown in quantum-mechanical cal-
culations that wave functions often appear to be local-
ized in the region of unstable periodic orbits (“scars”) in
chaotic systems. We have recently applied these ideas,
together with the description of classical periodic trajec-
tories and KAM surfaces presented in this paper, to the
quantum system. In work described in a future paper, we
discuss this application to the determination of possible
candidates for a quantum resonance that is the quantum
equivalent of the classical KAM surface.
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